
Guillaume Lopez
Living Environment Laboratory

The University of Tokyo, School of Engineering

– Wireless Programming on Android–

Understanding Heart and Body
Status from a Smartphone

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 2

．Class #4

★．Presentation of main points in Wireless Data Transmission
Programming

★．Example source code analysis

Smartphone Sensor Web #4
｢Table of Contents｣

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 3

Communication capabilities

• Wireless type
– WIFI,
– Bluetooth,
– NFC

• Wired type
– USB,

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 4

Wireless Programming on Android

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 5

Fundamental Bluetooth Capabilities

• Point-to-point and Multipoint wireless features
– Scanning for other Bluetooth devices
– Querying the local Bluetooth adapter for paired Bluetooth devices
– Manage multiple connections
– Establishing RFCOMM channels/sockets
– Connecting to a remote device
– Transferring data over Bluetooth (bi-directional)

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 6

Sample Program Reading

• BluetoothChat
– Create project from existing sample
– Android 2.1-update1

• Content
– BluetoothChat

– BluetoothChatService

– DeviceListActivity

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 7

The 4 Basics: set-up, find, connect, transfer

• All of the Bluetooth APIs are available in the
android.bluetooth package

• BluetoothAdapter: the Bluetooth radio.
It is the entry-point for all Bluetooth interaction.

• Discover other Bluetooth devices,
• Qquery a list of paired devices,
• Instantiate a BluetoothDevice using a known MAC address,
• Create a BluetoothServerSocket to listen for communications from other devices.

• BluetoothDevice: remote Bluetooth device
Use this to

• Request a connection with a remote device through a BluetoothSocket
• Query information about the device (name, address, class, and pairing state).

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 8

The 4 Basics: set-up, find, connect, transfer

• BluetoothSocket: interface for a Bluetooth socket
Connection point that allows an application to exchange data with
another Bluetooth device via InputStream and OutputStream.

• BluetoothServerSocket: socket that listens for incoming requests
In order to connect 2 Android devices, 1 device must open a server
socket with this class.
Return a connected BluetoothSocket when the connection is
accepted.

• BluetoothClass: BT device general characteristics & capabilities
Read-only set of properties that define the device's major and minor
device classes and its services.
Does not reliably describe all Bluetooth profiles and services supported
by the device, but is useful as a hint to the device type.

• Mandatory
– BLUETOOTH_ADMIN

Necessary to initiate device discovery or manipulate settings.

– BLUETOOTH
Necessary to perform any Bluetooth communication, such as requesting a
connection, accepting a connection, and transferring data

– Declare the Bluetooth permission(s) in your application manifest file.

• Declare in the application manifest file

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 9

Permissions for Using Bluetooth

<?xml version="1.0" encoding="utf-8"?>
<manifest … >

<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses-permission android:name="android.permission.BLUETOOTH" />
...

<uses-sdk android:minSdkVersion="7" />

</manifest>

1. Get the BluetoothAdapter & Enable Bluetooth
1. If Bluetooth is not supported, then disable any Bluetooth features.
2. If Bluetooth is supported, but disabled, then you can request that

the user enable Bluetooth without leaving your application.

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 10

Setting Up Bluetooth

BluetoothAdapter mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter();
if (mBluetoothAdapter == null) {

// Device does not support Bluetooth
}
Else {

if (!mBluetoothAdapter.isEnabled()) {
Intent enableBtIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
startActivityForResult(enableBtIntent, REQUEST_ENABLE_BT);

}
}

The enabling Bluetooth dialog

• Querying paired devices
Get MAC address from the BluetoothDevice object to initiate connection

• Discovering devices
–Simply call
–…

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 11

Finding Devices

Set<BluetoothDevice> pairedDevices = mBluetoothAdapter.getBondedDevices();
// If there are paired devices
if (pairedDevices.size() > 0) {

// Loop through paired devices
for (BluetoothDevice device : pairedDevices) {

// Add the name and address to an array adapter to show in a ListView
mArrayAdapter.add(device.getName() + "¥n" + device.getAddress());

}
}

mBluetoothAdapter.startDiscovery();

• Discovering devices
– Must register a BroadcastReceiver for the ACTION_FOUND Intent in

order to receive information about each device discovered

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 12

Finding Devices

onDestroy

// Create a BroadcastReceiver for ACTION_FOUND
private final BroadcastReceiver mReceiver = new BroadcastReceiver() {

public void onReceive(Context context, Intent intent) {
String action = intent.getAction();
// When discovery finds a device
if (BluetoothDevice.ACTION_FOUND.equals(action)) {

// Get the BluetoothDevice object from the Intent
BluetoothDevice device =

intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);
// Add the name and address to an array adapter to show in a ListView
mArrayAdapter.add(device.getName() + "¥n" + device.getAddress());

}
}

};
// Register the BroadcastReceiver
IntentFilter filter = new IntentFilter(BluetoothDevice.ACTION_FOUND);
registerReceiver(mReceiver, filter); // Don't forget to unregister during

onDestroy

You must implement both the server-side and client-side
mechanisms
Procedure to set up a server socket and accept a connection:

1. Get a BluetoothServerSocket
call listenUsingRfcommWithServiceRecord(String, UUID)
The string is an identifiable name of your service (i.e. application name), which the
system will write to a new Service Discovery Protocol (SDP) DB entry on the device.
The UUID is also included in the SDP entry and will be the basis for the connection
agreement with the client device. It uniquely identifies the service with which it wants
to connect. It must match in order for the connection to be accepted.

2. Start listening for connection requests
call accept()
This is a blocking call. It will return when either a connection has been accepted or an
exception has occurred. A connection is accepted only when a remote device has
sent a connection request with a UUID matching the one registered with this listening
server socket. When successful, accept() will return a connected BluetoothSocket.

3. Unless you want to accept additional connections, call close().

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 13

Connecting Devices

Procedure to set up a client socket:
1. Using the BluetoothDevice, get a BluetoothSocket

call createRfcommSocketToServiceRecord(UUID).
This initializes a BluetoothSocket that will connect to the BluetoothDevice. The UUID
passed here must match the UUID used by the server device when it opened
its BluetoothServerSocket (withlistenUsingRfcommWithServiceRecord(String,
UUID)). Using the same UUID is simply a matter of hard-coding the UUID string into
your application and then referencing it from both the server and client code.

2. Initiate the connection
call connect().
Upon this call, the system will perform an SDP lookup on the remote device in order
to match the UUID. If the lookup is successful and the remote device accepts the
connection, it will share the RFCOMM channel to use during the connection
and connect() will return. This method is a blocking call. If, for any reason, the
connection fails or the connect() method times out (after about 12 seconds), then it
will throw an exception.
Because connect() is a blocking call, this connection procedure should always be
performed in a thread separate from the main Activity thread.

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 14

Connecting Devices

When you have successfully connected two (or more) devices,
each one will have a connected BluetoothSocket.
You can share data between devices, using the
BluetoothSocket:

1. Get the InputStream and OutputStream that handle transmissions
through the socket, via getInputStream() and getOutputStream(),
respectively.

2. Read and write data to the streams with read(byte[]) and
write(byte[]).

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 15

Managing a Connection

2010.10.20~2011/01/19 Smartpohne Sensor Web – Todai, Mech. Eng. Bachelor – Guillaume Lopez 16

．References
★． Android Dev Guide
http://developer.android.com/guide/topics/wireless/bluetooth.html

Smartphone Sensor Web #4
｢Location Sensitive Android Programming｣

